FORMULARIO DI MATEMATICA

Sommario

ALGEBRA .. 2
DISEQUAZIONI ... 5
GEOMETRIA .. 6
GEOMETRIA ANALITICA ... 7
FUNZIONI – ESPONENZIALI LOGARITMI .. 9
TRIGONOMETRIA .. 11
CALCOLO COMBINATORIO ... 12
PROBABILITÀ’ ... 12
PERCENTUALI ... 12
PROGRESSIONI .. 12
LOGICA ... 13
STATISTICA .. 13
ALGEBRA

INSIEMI NUMERICI

<table>
<thead>
<tr>
<th>C</th>
<th>Complessi</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Reali</td>
</tr>
<tr>
<td>Q</td>
<td>Razionali</td>
</tr>
<tr>
<td>Z</td>
<td>Interi</td>
</tr>
<tr>
<td>N</td>
<td>Naturali</td>
</tr>
</tbody>
</table>

POTENZE

\[
\begin{align*}
a^0 &= 1 \\
a^m \cdot a^n &= a^{m+n} & (a^m)^n &= a^{mn} \\
a^m/a^n &= a^{m-n} & a^n \cdot b^n &= (a \cdot b)^n
\end{align*}
\]

\[
\begin{align*}
a^{-n} &= \frac{1}{a^n} \\
\left(\frac{a}{b}\right)^{-n} &= \left(\frac{b}{a}\right)^n \\
\frac{a_m}{b_m} &= \sqrt[n]{a} \\
\left(\frac{a}{b}\right)^m &= n \cdot \left(\frac{a}{b}\right)^m \\
\frac{a}{a^n} &= \frac{1}{a^{m-n}} = \frac{1}{a^m}
\end{align*}
\]

PRODOTTI NOTEVOLI

\[
\begin{align*}
(a + b)(a - b) &= a^2 - b^2 & \text{somma per differenza} \\
(a + b)^2 &= a^2 + 2ab + b^2 & \text{quadrato di un binomio} \\
(a + b + c)^2 &= a^2 + b^2 + c^2 + 2ab + 2ac + 2bc & \text{quadrato di un trinomio} \\
(a + b)(a^2 - ab + b^2) &= a^3 + b^3 & \text{particolari prodotti notevoli} \\
(a - b)(a^2 + ab + b^2) &= a^3 - b^3 & \\
\end{align*}
\]

POTENZA DEL BINOMIO

\[
(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}
\]

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

\[n! = 1 \cdot 2 \cdot ... \cdot n\]

SCOMPOSIZIONI

\[
\begin{align*}
ab + ac &= a(b + c) & \text{raccolgimento totale a fattore comune} \\
ab + ac + nb + nc &= a(b + c) + n(b + c) = (b + c)(a + n) & \text{raccolgimento parziale a fattore comune} \\

a^2 - b^2 &= (a - b)(a + b) & \text{differenza di due quadrati} \\
a^3 + b^3 &= (a + b)(a^2 - ab + b^2) & \text{soma di cubi} \\
a^3 - b^3 &= (a - b)(a^2 + ab + b^2) & \text{differenza di cubi} \\
a^2 \pm 2ab + b^2 &= (a \pm b)^2 & \text{quadrato di binomio} \\

\end{align*}
\]

\[
\begin{align*}
a^{m+n} \pm 2a^m b^n + b^{2n} &= (a^m \pm b^n)^2 & \text{trinomio notevole con esponente pari} \\
x^n + sx + p &= (x + m)(x + n) & m + n = s & m \cdot n = p & \text{trinomio con somma e prodotto caso } a = 1 \\
ax^2 + sx + p &= (x + m)(x + n) & & \text{trinomio con somma e prodotto caso } a \neq 1 \\

\end{align*}
\]

\[
\begin{align*}
a^3 \pm 3a^2 b + 3ab^2 \pm b^3 &= (a \pm b)^3 & \text{ cubo di binomio} \\

a^2 \pm 2ab + b^2 - c^2 &= (a + b)^2 - c^2 = (a + b)(a + b - c) & \text{riduzione a differenza di quadrati} \\
c^2 - a^2 - 2ab + b^2 &= c^2 - (a + b)^2 = (c - a - b)(c + a + b) \\
\end{align*}
\]

\[
\begin{align*}
a^2 + b^2 + c^2 + 2ab + 2ac + 2bc &= (a + b + c)^2 & \text{ quadrato di un trinomio} \\
a^2 + b^2 + c^2 + 3a^2 b + 3ab^2 + 3a^2 c + 3ac^2 + 3b^2 c + 3bc^2 + 6abc &= (a + b + c)^3 & \text{ cubo di un trinomio}
\end{align*}
\]
EQUAZIONI DI 1° GRADO

| EQUAZIONI DI 1° GRADO | \[ax + b = 0 \rightarrow x = -\frac{b}{a} \quad \text{con } a \neq 0 \] | \[0x = 0 \] indeterminata
\[-0x = b \] impossibile |
|-----------------------|---|-----------------------------|

DISEQUAZIONI DI 1° GRADO

<table>
<thead>
<tr>
<th>DISEQUAZIONI DI 1° GRADO</th>
<th>[ax + b > 0 \rightarrow x > -\frac{b}{a} \quad \text{con } a > 0]</th>
<th>[ax + b > 0 \rightarrow x < -\frac{b}{a} \quad \text{con } a < 0]</th>
</tr>
</thead>
</table>

SISTEMI LINEARI

<table>
<thead>
<tr>
<th>SISTEMI LINEARI</th>
<th>[\begin{cases} ax + by + c = 0 \ a_1x + b_1y + c_1 = 0 \end{cases}]</th>
<th>[\begin{cases} \frac{a+b}{a_2+b_2} \quad \text{determinato} \ \frac{a-b+c}{a_1+b_1} \quad \text{impossibile} \ \frac{a-b}{a_1+b_1} \quad \text{indeterminato} \end{cases}]</th>
</tr>
</thead>
</table>

VALORE ASSOLUTO

| VALORE ASSOLUTO | \[|a| = \begin{cases} a & \text{se } a \geq 0 \\ -a & \text{se } a < 0 \end{cases} \] |
|-----------------|---|-----------------------------|

OPERAZIONI CON I RADICALI

<table>
<thead>
<tr>
<th>OPERAZIONI CON I RADICALI</th>
<th>[m\sqrt{a^n} = \sqrt[n]{a^n}]</th>
<th>[\sqrt[3]{8} = \sqrt[3]{2^3} = 2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>trasporto di fattore</td>
<td>[a\sqrt{b} = \sqrt{a^n b}]</td>
<td>[2\sqrt{3} = \sqrt{3^2 \cdot 3} = \sqrt{27}]</td>
</tr>
<tr>
<td>trasporto di fattore fuori</td>
<td>[\sqrt{a^n b} = a\sqrt{b}]</td>
<td>[\sqrt[3]{5} \cdot \sqrt{2} = \sqrt[3]{10}]</td>
</tr>
<tr>
<td>potenza di radicali</td>
<td>[(\sqrt{a})^m = \sqrt{a^m}]</td>
<td>[\sqrt[5]{5} \cdot \sqrt{2} = \sqrt[5]{5^2 \cdot 2^3} = \sqrt[5]{200}]</td>
</tr>
<tr>
<td>radice di radice</td>
<td>[m\sqrt[3]{a^n} = \sqrt[3]{a^n}]</td>
<td>[3\sqrt{2} = \sqrt{2^3 \cdot 3} = \sqrt{18}]</td>
</tr>
<tr>
<td>somma algebraica di radicali simili</td>
<td>[a\sqrt{a} + \beta\sqrt{a} = (a + \beta)^{\frac{1}{a}}]</td>
<td>[8\sqrt{2} - 5\sqrt{2} = 3\sqrt{2}]</td>
</tr>
</tbody>
</table>

RAZIONALIZZAZIONI

<table>
<thead>
<tr>
<th>RAZIONALIZZAZIONI</th>
<th>[\frac{b}{\sqrt{a}} = \frac{b\cdot\sqrt{a}}{\sqrt{a}\cdot\sqrt{a}} = \frac{b\cdot\sqrt{a}}{a}]</th>
<th>[\frac{b}{\sqrt[3]{a^{n-m}}} = \frac{b\cdot\sqrt[n]{a^{n-m}}}{a}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{x}{a + \sqrt{b}} = \frac{x(a - \sqrt{b})}{a^2 - b}]</td>
<td>[\frac{x}{\sqrt{a + \sqrt{b}}} = \frac{x(\sqrt{a} - \sqrt{b})}{a - b}]</td>
<td></td>
</tr>
<tr>
<td>[\frac{3a + \sqrt{b}}{3a + \sqrt{b}} = \frac{x(3\sqrt{a^2 - 3\sqrt{ab} + 3\sqrt{b^2}})}{a + b}]</td>
<td>[\frac{3\sqrt{a} + \sqrt{b}}{3\sqrt{a} + \sqrt{b}} = \frac{x(3\sqrt{a^2 - 3\sqrt{ab} + 3\sqrt{b^2}})}{a + b}]</td>
<td></td>
</tr>
</tbody>
</table>
Equazioni di 2° Grado Complete

\(ax^2 + bx + c = 0 \)

La formula si applica solo se \(a^2 - b \) è un quadrato perfetto

\[
x = \frac{-b \pm \sqrt{\Delta}}{2a}
\]

\(\Delta > 0 \)	2 soluzioni reali distinte
\(\Delta = 0 \)	1 soluzione reale doppia
\(\Delta < 0 \)	nessuna soluzione reale

Equazioni di 2° Grado Incomplete

\(ax^2 + bx + c = 0 \)

\(x_1 = 0 \)

\(x_2 = -\frac{b}{a} \)

\(x^2 = -\frac{c}{a} \)

Se \(-c/a < 0 \)

\(\Delta > 0 \)

2 radici reali e distinte \(x_1 \) e \(x_2 \)

\[
s = x_1 + x_2 = \frac{b}{a}
p = x_1 \cdot x_2 = \frac{c}{a}
\]

\(ax^2 + bx + c = a(x - x_1)(x - x_2) \)

\(\Delta = 0 \)

2 radici reali e coincidenti o una soluzione doppia \(x_1 \)

\(ax^3 + bx + c = a(x - x_1)^2 \)

\(\Delta < 0 \)

Nessuna radice reale \(ax^2 + bx + c \) irreducibile

Equazioni Binomie

\(ax^n + c = 0 \)

\[
-\frac{c}{a} \geq 0 \Rightarrow x = \pm \sqrt[n]{-\frac{c}{a}}
\]

\[
-\frac{c}{a} < 0 \Rightarrow \text{no soluz}
\]

Equazioni Trinomie

\(ax^n + bx^n + c = 0 \)

\[
t = x^n \quad \text{at}^2 + bt + c = 0
\]

Risolvi ed applica metodi delle equazioni binomie
Disequazioni

Disequazioni di 2° grado

<table>
<thead>
<tr>
<th>Coord.</th>
<th>Radici</th>
<th>(p(x) > 0)</th>
<th>(p(x) \geq 0)</th>
<th>(p(x) < 0)</th>
<th>(p(x) \leq 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta > 0)</td>
<td>(x_1, x_2)</td>
<td>(x < x_1 \lor x > x_2)</td>
<td>(x \leq x_1 \lor x \geq x_2)</td>
<td>(x_1 < x < x_2)</td>
<td>(x_1 \leq x \leq x_2)</td>
</tr>
<tr>
<td>(\Delta = 0)</td>
<td>(x_1)</td>
<td>(x \neq x_1)</td>
<td>(\forall x \in \mathbb{R})</td>
<td>(x \neq x_1)</td>
<td>(x = x_1)</td>
</tr>
<tr>
<td>(\Delta < 0)</td>
<td>(-)</td>
<td>(\forall x \in \mathbb{R})</td>
<td>(\forall x \in \mathbb{R})</td>
<td>(x \leq x)</td>
<td>(x \geq x)</td>
</tr>
</tbody>
</table>

Disequazioni di grado > 2 e fratte

Studiare i segni dei fattori:

\[
\begin{align*}
A(x) > 0 & \quad & B(x) > 0 & \quad & \text{Se} & \quad & \text{Sempre} & \quad & \text{Studiare} & \quad & \text{Caso} & \quad & \text{Per le fratte} \geq 0 \text{ solo al Numeratore} \\
\end{align*}
\]

Le soluzioni sono gli intervalli con i segni richiesti.

Sistemi di Disequazioni

Un sistema di disequazioni contiene n disequazioni da risolvere singolarmente:

\[
\begin{align*}
A(x) \leq 0 & \quad & B(x) \leq 0 & \quad & \Rightarrow & \quad & \{S1 \} & \quad & \{S2 \} & \quad & \text{La soluzione del sistema è l'intersezione delle soluzioni delle singole disequazioni:} & \quad & S = S1 \cap S2 \cap ... \\
\end{align*}
\]

Grafico:

Unione di Disequazioni

\[
\begin{align*}
(A(X) \leq > 0) & \lor (B(x) \leq > 0) & \Rightarrow & \text{Soluzione} S = S1 \lor S2 \\
\end{align*}
\]

Grafico:

Equazioni e Disequazioni Irrazionali con Radice Quadrata

(C.E.: \(A(x) \geq 0 \))

\[
\begin{align*}
\sqrt{A(x)} = n & \iff A(x) = n^2 & \text{se} & \quad n \geq 0 \\
\sqrt{A(x)} < n & \iff A(x) < n^2 & \text{se} & \quad n < 0 \\
\sqrt{A(x)} > n & \iff A(x) > n^2 & \text{se} & \quad n < 0 \\
\end{align*}
\]

\[
\begin{align*}
\sqrt{A(x)} = B(x) & \iff \quad \begin{cases} \quad A(x) \geq 0 \\
\quad B(x) \geq 0 \\
\quad A(x) = B^2(x) \end{cases} \\
\sqrt{A(x)} < B(x) & \iff \quad \begin{cases} \quad A(x) \geq 0 \\
\quad B(x) > 0 \\
\quad A(x) < B^2(x) \end{cases} \\
\sqrt{A(x)} > B(x) & \iff \quad \begin{cases} \quad A(x) \geq 0 \\
\quad B(x) > 0 \\
\quad A(x) > B^2(x) \end{cases} \\
\sqrt{A(x)} = B(x) & \iff \quad \begin{cases} \quad A(x) \geq 0 \\
\quad B(x) \geq 0 \\
\quad A(x) = B(x) \end{cases} \\
\end{align*}
\]

Equazioni e Disequazioni con Modulo

\[
\begin{align*}
|A(x)| = \begin{cases} & \quad \begin{cases} \quad A(x) \quad \text{se} & \quad n \geq 0 \\
\quad \phi \quad \text{se} & \quad n < 0 \end{cases} \\
\quad A(x) \quad \text{se} & \quad n \geq 0 \\
\quad \phi \quad \text{se} & \quad n < 0 \end{cases} \\
\end{align*}
\]

\[
\begin{align*}
|A(x)| > n & \iff \quad \begin{cases} \quad A(x) < -n \quad \text{se} & \quad n \geq 0 \\
\quad A(x) > n \quad \text{se} & \quad n \leq 0 \end{cases} \\
\quad R \quad \text{se} & \quad n < 0 \end{align*}
\]

Caso generale: la disequazione contiene un valore assoluto \(|A(x)| \)

\[
\begin{align*}
& \quad \begin{cases} \quad A(x) \geq 0 \\
\quad \text{disequazione con} \quad A(x) \end{cases} & \quad \begin{cases} \quad A(x) < 0 \\
\quad \text{disequazione con} \quad -A(x) \end{cases} \\
\end{align*}
\]
PUNTI NOTEVOLI DI UN TRIANGOLO

<table>
<thead>
<tr>
<th>ORTOCENTRO</th>
<th>INCENTRO</th>
<th>BARICENTRO</th>
<th>CIRCOCENTRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altezze</td>
<td>Bisettrici</td>
<td>Mediane</td>
<td>Assi</td>
</tr>
</tbody>
</table>

POLIGONO DI n LATI

SOMMA DEGLI ANGOLI INTERNI = \((n - 2) \cdot 180^\circ\)

ANGolo DI UN POLIGONO REGOLARE (LATI E ANGOLI UGUALI) = \(\frac{(n - 2) \cdot 180^\circ}{n}\)

CIRCONFERENZA

Un quadrilatero è: **INSCRIVIBILE** se gli angoli opposti sono supplementari, **CIRCOSCRIVIBILE** se ha uguali le somme dei lati opposti.

CONVERSIONI MISURE ANGOLI

AREE DI FIGURE PIANE

<table>
<thead>
<tr>
<th>TRIANGOLO</th>
<th>QUADRATO</th>
<th>CERCHIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = \frac{b \cdot h}{2})</td>
<td>(d = l\sqrt{2})</td>
<td>(A = \pi r^2)</td>
</tr>
</tbody>
</table>

TEOREMI SUI TRIANGOLI RETTANGOLI

AH = \((AB \cdot AC) / BC\)

TEOREMA DI PITAGORA: \(AB^2 + AC^2 = BC^2\)

I° TEOREMA DI EUCLIDE: \(AB^2 = BH \cdot BC\)

II° TEOREMA DI EUCLIDE: \(AH^2 = BH \cdot HC\)

APPLICAZIONI DEL TEOREMA DI PITAGORA

SOLIDI

<table>
<thead>
<tr>
<th>CUBO</th>
<th>PARALLELEPIPEDO RETTANGOLARE</th>
<th>PIRAMIDE RETTA A BASE REGOLARE</th>
<th>CILINDRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V = l^3)</td>
<td>(V = a \cdot b \cdot c)</td>
<td>(V = \frac{1}{3} S_B \cdot h)</td>
<td>(V = \pi r^2 \cdot h)</td>
</tr>
<tr>
<td>(S_H = 2l^2)</td>
<td>(S_L = 4l^2)</td>
<td>(S_B = 2ab)</td>
<td>(S_H = 2 \pi r^2)</td>
</tr>
</tbody>
</table>

TEOREMA DI EULERO

Facce + Vertici – Spigoli = 2

<table>
<thead>
<tr>
<th>CONO</th>
<th>SPHERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V = \frac{1}{3} \pi r^2 \cdot h)</td>
<td>(V = \frac{4}{3} \pi r^3)</td>
</tr>
<tr>
<td>(S_B = \pi r^2)</td>
<td>(S_L = \pi r a)</td>
</tr>
<tr>
<td>(S_B = 2 \pi r h)</td>
<td>(S_L = 2 \pi rh)</td>
</tr>
</tbody>
</table>
DISTANZA e PUNTO MEDIO TRA 2 PUNTI

A\((x_1 ; y_1) \)

B\((x_2 ; y_2) \)

\[
AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]

\[
M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)
\]

\[
A'B' = |x_2 - x_1|
\]

\[
A''B'' = |y_2 - y_1|
\]

DISTANZA PUNTO - RETTA

\[
d(A; r) = \frac{|ax + by + c|}{\sqrt{a^2 + b^2}}
\]

CIRCONFERENZA

\[
(x - \alpha)^2 + (y - \beta)^2 = r^2
\]

\[
x^2 + y^2 + ax + by + c = 0
\]

CIRCONFERENZA E RETTA

- **Secante**: \(d < r - \Delta > 0 \)
- **Tangente**: \(d = r - \Delta = 0 \)
- **Esterna**: \(d > r - \Delta < 0 \)

Equazione della RETTA

Forma implicita: \(ax + bx + c = 0 \)

Forma esplicita: \(y = mx + q \)

Coeff. angolare: \(m = \frac{b}{a} \)

Intercetta: \(q = -\frac{c}{a} \)

- \(m = 0 \)
- \(m > 0 \)
- \(m = \infty \)
- \(m < 0 \)

Parallelismo e Perpendicolarità

\(m = m' \)

\(m' = -\frac{1}{m} \)

Fasci

- Fascio proprio
- Fascio improprio

\(\alpha x + by + k = 0 \)

\(y = mx + k \)

Intercetta

\(a \)

\(b \)

\(c \)

\(q \)
PARABOLA con asse // asse y

\[y = ax^2 + bx + c \]

- \(a > 0 \) – concavità verso l’alto
- \(a < 0 \) – concavità verso il basso

\[a : x = -\frac{b}{2a} \]

\[V\left(-\frac{b}{2a}; -\frac{\Delta}{4a} \right) \]

\[d : y = -\frac{1-\Delta}{4a} \]

PARABOLA con asse // asse x

\[x = ay^2 + by + c \]

- \(a > 0 \) – concavità verso destra
- \(a < 0 \) – concavità verso sinistra

\[a : y = -\frac{b}{2a} \]

\[V\left(-\frac{\Delta}{4a}; -\frac{b}{2a} \right) \]

\[d : x = -\frac{1-\Delta}{4a} \]

Ellisse con i fuochi sull’asse x

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

- \(a > b \)

\[A_1(-a; 0) \quad F_2(c; 0) \]

\[A_2(a; 0) \quad F_1(-c; 0) \]

\[B_1(0; b) \quad c^2 = a^2 - b^2 \]

\[B_2(0; -b) \quad e = \frac{c}{a} \]

Ellisse con i fuochi sull’asse y

\[\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \]

- \(a < b \)

\[A_1(-a; 0) \quad A_2(a; 0) \]

\[B_1(0; b) \quad B_2(0; -b) \]

\[F_1(0; -c) \quad F_2(0; c) \]

\[c^2 = b^2 - a^2 \]

\[e = \frac{c}{a} \]

Iperbole con i fuochi sull’asse x

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]

\[A_1(-a; 0) \quad A_2(a; 0) \]

\[F_1(-c; 0) \quad F_2(c; 0) \]

\[c^2 = a^2 + b^2 \]

\[e = \frac{c}{a} \]

Iperbole con i fuochi sull’asse y

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \]

\[A_1(0; a) \quad A_2(0; a) \]

\[F_1(0; -c) \quad F_2(0; c) \]

\[c^2 = a^2 + b^2 \]

\[e = \frac{c}{a} \]

Altre equazioni dell’iperbole

\[x^2 - y^2 = \pm a^2 \]

\[xy = k \]

\[y = \frac{ax + b}{cx + d} \]
DEFINIZIONE DI FUNZIONE

“Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere ad ogni elemento \(x \in A \) uno ed un solo elemento \(y \in B \).”

Per indicare che \(f \) è una funzione di A in B si scrive:

\[f : A \rightarrow B; \quad f : x \in A \rightarrow y \in B; \quad \text{oppure} \quad y = f(x) \]

L’elemento \(x \) si chiama variabile indipendente o argomento della funzione. L’elemento \(Y \) si chiama variabile dipendente o immagine (in corrispondenza di \(x \)) della funzione.

L’insieme A dei valori \(x \) per i quali esiste il corrispondente valore della \(y \) si dice campo di esistenza o insieme di definizione o dominio della funzione. L’insieme \(f(A) \) di tutti gli elementi associati ai valori di A si chiama codominio della funzione.

FUNZIONI INVERTIBILI

Una funzione \(f \) si dice biettiva sul codominio B se ogni elemento di B è associato una sola volta ad un elemento di A.

Una funzione biettiva è anche invertibile: cioè se \(f : x \in A \rightarrow y \in B \) è biettiva e associamo ad ogni valore \(y \) del codominio l’elemento \(x \) del dominio otteniamo una nuova funzione detta funzione inversa:

\[f^{-1} : y \in B \rightarrow x \in A. \]

FUNZIONI COMPOSTE

Siano date due funzioni \(f : x \in A \rightarrow y \in B \) e \(g : y \in C \rightarrow z \in D \). Se B e C hanno elementi comuni sia \(I = B \cap C \) (intersezione di B e C). Dato che ad ogni elemento \(x \) associato ad un elemento \(y = f(x) \in I \) si può associare l’elemento \(g(y) = g(f(x)) \) associato ad \(f(x) \) si forma la funzione composta \(z = f \circ g(x) = g(y) = g(f(x)) : A \rightarrow D \).

Il dominio della funzione composta può anche non coincidere con l’insieme A ma esserne un sottoinsieme.

CLASSIFICAZIONE

<table>
<thead>
<tr>
<th>CALCOLO DEL DOMINIO</th>
<th>FUNZIONI</th>
<th>CALCOLO DEL DOMINIO</th>
<th>FUNZIONI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funzione</td>
<td>Condizione</td>
<td>Funzione</td>
<td>Condizione</td>
</tr>
<tr>
<td>(y = \frac{f(x)}{g(x)})</td>
<td>(g(x) = 0)</td>
<td>(y = \tan(f(x)))</td>
<td>(f(x) = x + k\pi)</td>
</tr>
<tr>
<td>(y = \sqrt{f(x)})</td>
<td>(n) pari</td>
<td>(y = \cot g(f(x)))</td>
<td>(f(x) = k \pi)</td>
</tr>
<tr>
<td>(y = \log_a f(x))</td>
<td>(f(x) > 0)</td>
<td>(y = \arcsen f(x))</td>
<td>(-1 \leq f(x) \leq 1)</td>
</tr>
<tr>
<td>(y = f(x)^{x(x)})</td>
<td>(f(x) > 0)</td>
<td>(y = \arccos f(x))</td>
<td>(f(x) > 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D_1</th>
<th>D_2</th>
</tr>
</thead>
</table>

FUNZIONI MONOTONE

Una funzione si dice CRESCENTE in un intervallo se: \(x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2) \)

Una funzione si dice DECRESCENTE in un intervallo se: \(x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2) \)

FUNZIONI PARI, DISPARI

Una funzione \(y = f(x) \) si dice pari se: \(f(-x) = f(x) \quad \forall x \in A \)

Una funzione \(y = f(x) \) si dice dispari se: \(f(-x) = -f(x) \quad \forall x \in A \)
Una funzione \(y = f(x) \) si dice periodica di periodo \(T \), con \(T > 0 \), se, per qualsiasi numero \(k \) intero, si ha:
\[
f(x) = f(x + kT)
\]

Funzione esponenziale
\[
f: x \in \mathbb{R} \rightarrow y = a^x \in \begin{cases}]0; +\infty[\\
\end{cases}
\]

Funzione logaritmica
\[
f: x \in]0; +\infty[\rightarrow y = \log_a x \in \mathbb{R}
\]

Proprietà di esponenziali e logaritmi

Esponenziali (Potenze)
- \(a^0 = 1 \)
- \(a^1 = a \)
- \(a^n \cdot a^m = a^{n+m} \)
- \(\frac{a^n}{a^m} = a^{n-m} \)
- \((a^n)^m = a^{nm} \)
- \(a^{-n} = \frac{1}{a^n} \)
- \(\sqrt[n]{a^m} = a^{\frac{m}{n}} \)

Logaritmi
- \(\log_a 1 = 0 \)
- \(\log_a a = 1 \)
- \(\log_a (n \cdot m) = \log_a n + \log_a m \)
- \(\log_a \frac{n}{m} = \log_a n - \log_a m \)
- \(\log_a m^n = n \log_a m \)
- \(\log_a b = \frac{\log_b b}{\log_b a} = \frac{\ln b}{\ln a} \)

Equazioni esponenziali
\[
a^{f(x)} = a^{g(x)} \Rightarrow f(x) = g(x)
\]

Disequazioni esponenziali
- \(a^{f(x)} < (>)a^{g(x)} \Rightarrow
\]
 - \(f(x) < (>)g(x) \rightarrow a > 1 \)
 - \(f(x) > (>)g(x) \rightarrow 0 < a < 1 \)
- \(a^{f(x)} < N \Rightarrow \text{impossibile} \quad N \leq 0 \)
- \(a^{f(x)} > N \Rightarrow \forall x \in \mathbb{R} \quad N > 0 \)

Equazioni logaritmiche
\[
\log_a f(x) = N \Rightarrow \begin{cases} f(x) > 0 \\
\end{cases}
\]

Disequazioni logaritmiche
- \(\log_a f(x) < (>)\log_a g(x) \Rightarrow
\]
 - \(f(x) > 0 \quad g(x) > 0 \quad a > 1 \)
 - \(f(x) < (>)g(x) \rightarrow a > 1 \)
 - \(f(x) > (>)g(x) \rightarrow 0 < a < 1 \)
- \(\log_a f(x) < (>)N \Rightarrow
\]
 - \(f(x) > 0 \quad g(x) > 0 \quad a > 1 \)
 - \(f(x) < (>)a^N \rightarrow a > 1 \)
 - \(f(x) > (>)a^N \rightarrow 0 < a < 1 \)
ANGOLI

\[\alpha_\pi = 360\text{-esima parte angolo giro} \]

CIRCONFERENZA GONIOMETRICA

RELAZIONI FONDAMENTALI ARCHI ASSOCIATI

\[\alpha : \alpha_\pi = 180^\circ : \pi \]

\[\alpha_\pi = \frac{180^\circ \cdot \alpha}{\pi} \]

\[\alpha_r = \frac{\pi \cdot \alpha_\pi}{180^\circ} \]

ANGOLI ELEMENTARI

FORMULE GONIOMETRICHE

FORMULE DI ADDIZIONE E SOTTRAZIONE

\[
\begin{align*}
\sin(\alpha + \beta) &= \sin\alpha \cos\beta + \cos\alpha \sin\beta \\
\sin(\alpha - \beta) &= \sin\alpha \cos\beta - \cos\alpha \sin\beta \\
\cos(\alpha + \beta) &= \cos\alpha \cos\beta - \sin\alpha \sin\beta \\
\cos(\alpha - \beta) &= \cos\alpha \cos\beta + \sin\alpha \sin\beta
\end{align*}
\]

\[\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} \]

\[\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta} \]

FORMULE DI DUPLICAZIONE

\[
\begin{align*}
\sin 2\alpha &= 2\sin\alpha \cos\alpha \\
\cos 2\alpha &= \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha
\end{align*}
\]

FORMULE DI BISEZIONE

\[
\begin{align*}
\sin \frac{\alpha}{2} &= \sqrt{\frac{1 - \cos\alpha}{2}} \\
\cos \frac{\alpha}{2} &= \sqrt{\frac{1 + \cos\alpha}{2}} \\
\tan \frac{\alpha}{2} &= \frac{\sin\alpha}{1 + \cos\alpha} = \frac{1 - \cos\alpha}{\sin\alpha}
\end{align*}
\]

EQUAZIONI GONIOMETRICHE

TEOREMA DEI SENI

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

TEOREMA DEI COSENI

\[a^2 = b^2 + c^2 - 2bc \cos A \]

\[b^2 = a^2 + c^2 - 2ac \cos B \]

\[c^2 = a^2 + b^2 - 2ab \cos C \]

TEOREMA DELLE DIAGONALI

\[AB = 2r \sin \alpha \]

Triangoli qualunque

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

\[\frac{\alpha}{\sin A} = \frac{\beta}{\sin B} = \frac{\gamma}{\sin C} \]

AREA DEL TRIANGOLO

\[A = \frac{1}{2} ab \sin \gamma = \frac{1}{2} ac \sin \beta = \frac{1}{2} bc \sin \alpha \]

TEOREMA DEI SENI

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2r \]

TEOREMA DEL COSENO O DI CARNOT

\[a^2 = b^2 + c^2 - 2bc \cos A \]

\[b^2 = a^2 + c^2 - 2ac \cos B \]

\[c^2 = a^2 + b^2 - 2ab \cos C \]
CALCOLO COMBINATORIO

<table>
<thead>
<tr>
<th>n fattoriale</th>
<th>n! = n·(n-1)....·1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPOSIZIONI SEMPLICI (CONTA L’ORDINE SENZA RIPETIZIONI):</td>
<td>D_{n,k} = n·(n-1)....·(n-k+1)</td>
</tr>
<tr>
<td>PERMUTAZIONI SEMPLICI (CONTA L’ORDINE SENZA RIPETIZIONI):</td>
<td>P_n = D_{n,n} = n!</td>
</tr>
<tr>
<td>COMBINAZIONI SEMPLICI (NON CONTA L’ORDINE SENZA RIPETIZIONI):</td>
<td>C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}</td>
</tr>
<tr>
<td>DISPOSIZIONI con RIPETIZIONE (CONTA L’ORDINE CON RIPETIZIONI):</td>
<td>D_{r,n,k} = n^k</td>
</tr>
<tr>
<td>COMBINAZIONI con RIPETIZIONE (NON CONTA L’ORDINE CON RIPETIZIONI):</td>
<td>C_{n,k} = \binom{n + k - 1}{k} = \frac{n+k-1!}{k!(n-1)!}</td>
</tr>
</tbody>
</table>

PROBABILITA’

<table>
<thead>
<tr>
<th>Probabilità di un evento E</th>
<th>p(E) = \frac{\text{casi favorevoli}}{\text{casi possibili}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilità dell’evento contrario E</td>
<td>p(\bar{E}) = 1 - p(E)</td>
</tr>
<tr>
<td>Probabilità dell’unione di eventi</td>
<td>p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)</td>
</tr>
<tr>
<td>Probabilità dell’unione di eventi incompatibili</td>
<td>p(E_1 \cup E_2) = p(E_1) + p(E_2)</td>
</tr>
<tr>
<td>Probabilità composta di eventi indipendenti</td>
<td>p(E_1 \cap E_2) = p(E_1) \cdot p(E_2)</td>
</tr>
<tr>
<td>Probabilità condizionale</td>
<td>p(E/F) = \frac{p(E \cap F)}{p(F)}</td>
</tr>
<tr>
<td>Probabilità composta di eventi dipendenti</td>
<td>p(E \cap F) = p(E/F) \cdot p(F)</td>
</tr>
</tbody>
</table>

Prova ripetuta n volte
Sia p la probabilità che E si verifichi una volta.
La probabilità che E si verichi k volte su n è

\[
\left(\begin{array}{c}
 \binom{n}{k} \\
\end{array}\right) p^k (1 - p)^{n-k}
\]

PERCENTUALI

<table>
<thead>
<tr>
<th>VARIAZIONE PERCENTUALE</th>
<th>P = \frac{\Delta V}{V_0} \cdot 100 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCOLO DEL VALORE FINALE</td>
<td>G_f = G \cdot \left(1 + \frac{P}{100}\right)</td>
</tr>
</tbody>
</table>

PROGRESSIONI

<table>
<thead>
<tr>
<th>Termine n-esimo di una progressione aritmetica di ragione d e termine iniziale a_0.</th>
<th>a_n = a_0 + (n-1)\cdot d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somma dei primi n termini di una progressione aritmetica</td>
<td>S_n = \frac{1}{2} \cdot n(a_1 + a_n)</td>
</tr>
<tr>
<td>Termine n-esimo di una progressione geometrica di ragione r e termine iniziale a_0.</td>
<td>a_n = a_0 \cdot r^n</td>
</tr>
</tbody>
</table>
LOGICA

<table>
<thead>
<tr>
<th>CONNETTIVI LOGICI</th>
<th>C.</th>
<th>SINTASSI</th>
<th>REGOLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non</td>
<td>~A</td>
<td>Cambia il valore di verità di A</td>
<td></td>
</tr>
<tr>
<td>Et</td>
<td>A ∧ B</td>
<td>V solo se A e B entrambi V</td>
<td></td>
</tr>
<tr>
<td>Vel</td>
<td>A ∨ B</td>
<td>F solo se A e B entrambi F</td>
<td></td>
</tr>
<tr>
<td>Aut</td>
<td>A ⊕ B</td>
<td>V solo se A V o B V (ma non entrambi)</td>
<td></td>
</tr>
<tr>
<td>Implicazione</td>
<td>A → B</td>
<td>F solo se A V e B F</td>
<td></td>
</tr>
</tbody>
</table>

A CONDIZIONE SUFFICIENTE PER B

B CONDIZIONE NECESSARIA MA NON SUFFICIENTE PER A

| Coincidenza | A ⇔ B | V se A e B entrambi V o entrambi F |

A SE E SOLO SE B

A CONDIZIONE NECESSARIA E SUFFICIENTE PER B

<table>
<thead>
<tr>
<th>REGOLE DI DEDUZIONE</th>
<th>Modus Ponens</th>
<th>Modus Tollens</th>
</tr>
</thead>
<tbody>
<tr>
<td>(((A → B) ∧ A) → B</td>
<td>((A → B) ∧ ~B) → ~A</td>
<td></td>
</tr>
<tr>
<td>(((A ⇔ B) ∧ A) → B</td>
<td>((A ⇔ B) ∧ B) → A</td>
<td></td>
</tr>
<tr>
<td>(((A ⇔ B) ∧ ~A) → ~B</td>
<td>((A ⇔ B) ∧ ~B) → ~A</td>
<td></td>
</tr>
</tbody>
</table>

Leggi di De Morgan

~(A ∨ B) = (~A) ∧ (~B)
~(A ∧ B) = (~A) ∨ (~B)

STATISTICA

<table>
<thead>
<tr>
<th>FREQUENZA RELATIVA</th>
<th>$f = \frac{F}{T}$ (Frequenza / Totale dati)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Aritmetica</td>
<td>$M = \frac{1}{n} \cdot \left(\frac{1}{n} \cdot \sum_{i=1}^{n} x_i\right)$</td>
</tr>
<tr>
<td>Media Armonica</td>
<td>$A = \frac{1}{\sum_{i=1}^{n} \frac{1}{x_i}}$</td>
</tr>
<tr>
<td>Media Geometrica</td>
<td>$G = \sqrt[n]{\prod_{i=1}^{n} x_i} = \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$</td>
</tr>
<tr>
<td>Media Aritmetica Ponderata</td>
<td>$p = \frac{1}{\sum_{i=1}^{n} P_i}$</td>
</tr>
<tr>
<td>Media Quadratica</td>
<td>$Q = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2}$</td>
</tr>
</tbody>
</table>

Indici di posizione centrale

<table>
<thead>
<tr>
<th>Semidispersione</th>
<th>Scarto medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S = \frac{x_{\text{max}} - x_{\text{min}}}{2}$</td>
<td>$sm = \frac{\sum_{i=1}^{n}</td>
</tr>
</tbody>
</table>

Indici di dispersione

<table>
<thead>
<tr>
<th>Varianza</th>
<th>Scarto quadratico medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - M)^2$</td>
<td>$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - M)^2}{n}} = \sqrt{\frac{(x_1 - M)^2 + \ldots + (x_n - M)^2}{n}}$</td>
</tr>
</tbody>
</table>